ECOLOGICALINFORMATICS 2 (2007)270-2738

. . . ECOLOGICAL
available at www.sciencedirect.com INFORMATICS

-
*s’ ScienceDirect

www.elsevier.com/locate/ecolinf et

A metadata-driven framework for generating field data entry
interfaces in ecology

Christopher Jones®*, Carol Blanchette?, Matthew Brooke?®, John Harris®,
Matthew Jones?, Mark Schildhauer®

@National Center for Ecological Analysis and Synthesis, University of California, Santa Barbara, United States
®Marine Science Institute, University of California, Santa Barbara, United States

ARTICLEINFO

ABSTRACT

Article history:
Received 2 November 2006
Accepted 24 June 2007

Keywords:

Ecological data entry
User-interface generation
Metadata

Handheld computer
Schema inference

With the advent of affordable yet powerful handheld computers, many ecologists now
capture data electronically in the field, while avoiding transcription errors found in more
traditional field notebook or slate-based approaches of recording data. Ecologists either use
simple forms from generic handheld software that doesn’t allow for needed optimizations,
or else they must spend substantial effort in the design and optimization of handheld
software user interfaces. These efforts often produce highly customized software that is not
easily repurposed, and that produce non-standard, undocumented data formats.

Our research is focused on reducing this effort by providing a flexible framework that
uses highly structured metadata to drive the generation of customized data entry interfaces.
Our approach relies on formalized metadata encoded in either XML Schema or XML instance
documents, which facilitate the creation of graphical interfaces from arbitrary data
schemas. Specifically, we leverage the rich metadata descriptions and structures found in
the Ecological Metadata Language to create data entry forms, and output data sets that
adhere to this specification. The interfaces are refined by using data-typing and domain
information found in the structured metadata to generate validation routines that assist in
maintaining data integrity during the entry process. The framework utilizes a rule-based
engine to promote both reuse and extensibility of the modules that are created for any given
data entry effort. Interfaces are rendered using open, Internet-based standards to maintain
portability and to advocate the sharing of software components.

The framework represents an initial implementation of a customizable user interface
generator, which should have broad applicability to researchers in need of rapidly creating
field and laboratory-based forms for varied collection efforts.

© 2007 Elsevier B.V. All rights reserved.

1. Introduction

are observed and to understand the processes involved in a
changing environment. Although most ecological data are

Ecologists are increasingly called upon to address broad
environmental issues such as climate change and loss of
biodiversity, and in doing so are expanding both the temporal
and spatial scales at which they collect data. Field experi-
ments and monitoring efforts play a crucial role in acquiring
the critical information needed to analyze the patterns that

* Corresponding author.
E-mail address: cjones@msi.ucsb.edu (C. Jones).

collected by individual researchers working in relative isola-
tion on highly focused topics, growth in the development of
collaborative, multi-disciplinary research programs has
heightened the need to efficiently and comprehensively
collect, document, communicate, and ultimately preserve
primary research data.

1574-9541/$ - see front matter © 2007 Elsevier B.V. All rights reserved.

doi:10.1016/j.ecoinf.2007.06.005

mailto:cjones@msi.ucsb.edu
http://dx.doi.org/10.1016/j.ecoinf.2007.06.005

ECOLOGICAL INFORMATICS 2 (2007) 270-278 271

Many ecologists conduct field experiments and monitoring
efforts using traditional data entry approaches that utilize
field notebooks, or, in the case of wet or underwater
environments, hand-written observations on waterproof
slates. Due to these relatively free-form methods of data
entry, data-typing and formats are generally unstructured,
and input values are unconstrained. Inconsistent or badly
structured data are often an unintended consequence. More-
over, this process introduces another opportunity for error
during the transcription itself. Important metadata such as
coordinates, sampling design descriptions, step by step
collection procedures, and variable meanings, types, and
units are often kept isolated from data tables because they
do not conform to the regular structure of a spreadsheet. This
information may be crucial for correct data interpretation and
analysis. Because broad synthetic research efforts rarely
review fine details about the raw datasets, errors or biases
that originate at this stage tend to persist in subsequent
research.

In order to address some of issues above, ecologists have
employed electronic data collection techniques using con-
sumer-level handheld computers such as PalmPilots™ and
PocketPCs™. Off-the-shelf software available for these plat-
forms allow for a reasonable degree of flexibility in producing
data entry applications and for interfacing them with external
hardware additions such as barcode scanners and GPS
receivers. However, many ecological experiments and moni-
toring efforts require a highly customized user interface (Ul)
that is tailored to the collection methods derived from the
sampling design (Van Tamalen, 2004). Efficiency can be a
critical factor due to time constraints imposed on the
collectors (e.g. rising tides in intertidal ecology), and in-the-
field configurability is often needed to deal with unforeseen
data entry issues (e.g. assigning temporary taxonomic codes to
unidentifiable taxa in the field for later keying in the
laboratory.) Given these and other demands, the creation of
highly usable data entry applications becomes a non-trivial
task, often requiring a dedicated programmer to develop and
test multiple iterations of an application, with each research
group’s development effort often starting from scratch.

The Jalama Project (Gaines et al., 2001) is an open source
software development effort aimed at improving ecological
informatics by providing a framework that allows for the
creation of customizable and reusable data entry interfaces
derived from highly structured and rich metadata descriptions
of arbitrary data schemas. In turn, the software produced from
the Jalama Project is compatible with a larger ongoing effort to
archive and distribute ecological metadata and data via the
Knowledge Network for Biocomplexity (KNB) (Jones et al., 2001;
Reichman et al.,, 1999; Berkley et al., 2001). One of the main
products produced from the KNB effort is the Ecological
Metadata Language (EML) (Nottrott et al., 1999), a communi-
ty-driven content specification designed to thoroughly docu-
ment ecological resources as described in Michener et al.
(1997), in a robust, extensible, and machine-readable format.
The instance documents of the EML language are encoded in
XML syntax (Bray et al., 1998) and are validated against the
content and structures stipulated in a series of modular XML
Schema (Biron and Malhotra, 2004) documents which imple-
ment the content specification of EML.

In this paper, we offer an approach that utilizes meta-
information from both XML instance documents and XML
Schema documents (such as EML documents) to generate
graphical user interfaces. The distinctive feature of this
approach is the automated generation of data entry forms
without a priori knowledge of the data schema of the target
dataset. In Section 2, we introduce the design and motivation
behind the Jalama user interface generator system, and
discuss the meta-information needed from input components
for user interface (UI) creation. In Section 3, we describe the
features of the Mozilla application framework that allow us to
express the Ul behavior, presentation, and application flow.
We also introduce a rule-based approach to user interface
pattern matching, field population, and application flow. We
conclude in Section 4 by discussing some of the future work
needed to refine the Ul generation framework.

2. Leveraging meta-information

The basis of an intuitive and successful user interface comes
from the intelligent presentation of the underlying data model
derived from the procedural methods in the sampling design of
a given collection effort or experiment. It is therefore common
practice to customize a given data or metadata entry application
based on the logical schema of a data model from a specific
physical model, for example tabular ASCII files or relational
database tables. The flow of the application is often hard-coded
based on the particular needs of the collection effort. The
customizations required are often tightly linked to the software
system chosen to create the application, and therefore re-
purposing the software becomes a non-trivial task. The
consequences of this type of software development model
include large up-front efforts of dedicated time, and often re-
implementation of the same basic software framework for each
collection effort, especially across uncoordinated institutional
efforts. Therefore, in order to reduce the effort needed for each
application development endeavor, we concentrate on exploit-
ing the metadata associated with common data models, both at
the abstract schema level and the instance level. In the initial
implementation of the framework, we focus on deriving critical
meta-information from the Ecological Metadata Language (EML)
schema and instance documents and encode collected data
from the generated user interfaces back into EML. By doing so,
we avoid the situation where critical metadata are physically
divorced from the data entities produced from a given collection
effort, increasing their longevity and applicability to future
synthetic analyses.

2.1. Main workflow of the Jalama framework

Employing the Jalama framework consists of a four sequential
steps, depicted in Fig. 1. These steps include: 1) developing an
EML document that describes the data to be collected, 2)
submitting this EML document as input to the UI generation
software, 3) syncing the resultant user interface to a field
computer running the client software that will render and run
the collection application, and 4) syncing the newly-created
EML documents and data that were collected in the field back
to the desktop computer for archival. The first step is typically

272 ECOLOGICAL INFORMATICS 2 (2007) 270-278

Serialize to disk

Create EML _ XML instance _| Generate User
document - document - Interface

Y

@‘.

Deploy field

Sync results to

application

desktop

Fig. 1 - Overview of the workflow involved in generating, deploying, and returning data from form-based user interfaces for

ecological data collection.

accomplished through the use of the ecological data manage-
ment client called Morpho (Higgins et al., 2002), whereby a
scientist uses a form-based wizard to describe the details of
the dataset, including high-level discovery metadata such as
title, creators, and abstract, as well as low level variable details
including definitions, associated units, domain constraints on
allowable entry values, and other detailed data-typing infor-
mation. The second step of generating the user interface
definition is likewise typically performed from within Morpho.
We have extended the Morpho software application with a
Jalama-based plugin that allows a researcher to choose the
target EML data package and invoke the Ul generation engine
via a menu command. The synchronization steps are initiated
on either the desktop computer running Morpho, or on a field
computer running the Jalama Client software, whereby the
serialized user interface file and the original EML metadata file
are transferred via HTTP using web server software embedded
in the application.

2.2. Instance-specific meta-information

In this framework, we have chosen to generate user interfaces
from the information found in XML Schema-based metadata
documents, specifically those expressed in the Ecological
Metadata Language. Although the framework may take an
arbitrary XML syntax and produce a generic user interface, we
capitalize on the detailed structures and constraints present
in EML documents that are highly pertinent to the scientific
data models being described in the EML. Listing 1 shows some
of the pertinent components of an EML document.

<eml ..>
<dataset>..
<dataTable>
<entityName>
Coastal Biodiversity Survey Table
</entityName>..
<attributeList>

<attribute>

<attributeName>position</attributeName>
<attributeLabel>
transect position
</attributeLabel>
<attributeDefinition>
The position along the transect in
meters.
</attributeDefinition>
<measurementScale>
<ratio>
<unit>
<standardUnit>
meter
</standardUnit>
</unit>
<precision>0.05</precision>
<numericDomain>
<numberType>real</numberType>
</numericDomain>
</ratio>
</measurementScale>
</attribute>
<attribute>
<attributeName>
class_codel
</attributeName>
<attributeLabel>
Classification Code 1
</attributelLabel>
<attributeDefinition>
The first observed classification ata
point along the transect.
</attributeDefinition>
<storageType>text</storageType>
<measurementScale>
<nominal>
<nonNumericDomain>
<enumeratedDomainenforced="yes”>

<codeDefinition>

ECOLOGICAL INFORMATICS 2 (2007) 270-278 273

<code>ACASPP</code>
<definition>
acanthina spp.
</definition>
</codeDefinition>
<codeDefinition>
<code>ACRSPP</code>
<definition>
acrosiphonia spp.
</definition>

</codeDefinition>
</enumeratedDomain>
</nonNumericDomain>
</nominal>
</measurementScale>
<missingValueCode>
<code>.</code>
<codeExplanation>
Aperiod (.) represents any missing
value for this column.
</codeExplanation>
</missingValueCode>
</attribute>..
</attributeList>..
</dataTable>
</dataset>
</eml>
Listing 1. Detailed data schema information for variables in a
dataset described in the Ecological Metadata Language.

In this example EML document, a dataset contains a single
data table with two variables described in detail. The first
variable, “position”, is a measure of distance along a fixed
transect. The metadata record contains highly pertinent in-
formation that will drive the creation of the data entry forms.
Although the name of this variable is readable, there is also an
“attributeLabel” element that provides a more human-read-
able label that would be used in marking an input field on the
data entry form. Likewise, the “position” variable is con-
strained to being a real number in the numeric domain,
measured in meters with a precision of 0.05 m. This infor-
mation is extracted by the UI generation software in order to
modify both the type of input widget presented to the
researcher and the behavior of the associated widget by cus-
tomizing the validation routines that are fired upon data
entry. For instance, in this case, if a character string were
entered into the input field, upon validation, the researcher
would be visually warned that the value falls outside of the
bounds of the allowable values, and would be prompted to
correct the entry.

Likewise, the second attribute in Listing 1 named
“class_codel” reveals that the variable’s data type falls in
the non-numeric, text domain, is constrained by an enumer-
ated list of coded values, and allows missing values to be
represented with a period (.). Again, the generation software
takes advantage of these metadata in order to produce an
appropriate data widget for the variable. In this case, for
example, a drop down list constrains the values to those in
the coded list.

2.3. Schema-level meta-information

Despite the explicit details regarding data typing, validation,
and constraints found in an EML instance document, meta-
information that governs the structure and content of the
instance document itself is also critical to the automated
generation of corresponding user interfaces. The W3C XML
Schema Recommendation provides an abstract data model
that can be used to assess the validity of an XML document
that adheres to the XML Infoset specification (Cowan and
Tobin, 2004). The abstract components defined in the recom-
mendation include type definitions and element declarations,
among other components, that govern the structure of XML
instance documents. The fundamental building blocks used in
a set of XML Schema documents can be examined in order to
extract the properties that affect user interface behavior and
flow. For instance, XML Schema content model groups include
“sequence”, “choice”, or “all” elements, which specify the
sequential (order matters), disjunctive (only one), or conjunc-
tive (all possible) structures available in an XML instance
document that adheres to the schema. Therefore, a complex
type class definition in the EML schema specification that
shows a “choice” element containing three separate sub
elements would prompt the Ul generation software to present
the user with a “choice” widget such as a radio button control.

Likewise, each element within the EML schema is governed
by the cardinality constraints expressed in the element
definition. As seen in Listing 2, both the minimum and
maximum allowable occurrences of the element have an
impact on the widgets rendered in the user interface. For
instance, a form may be generated that allows a researcher to
list the personnel associated with a data collection effort. In
the EML schema, the “personnel” element declaration is
optional and repeatable with no upper limit on the number
of possible elements in the document. This type of informa-
tion is crucial to user interface generation, since a listbox-type
widget would need to be rendered in order to accommodate
one to many “personnel” instances and their child elements.

<xs:element name=“personnel”
minOccurs="0"” maxOccurs="unbounded”>
<xs:complexType>
<xs:complexContent>
<xs:extension base=“rp:ResponsibleParty”>
<xs:sequence maxOccurs=“unbounded”>
<xs:element name="“role” type="rp:RoleType”>
</xs:element>
</xs:sequence>
</xs:extension>
</xs:complexContent>
</xs:complexType>
</xs:element>
Listing 2. An example element declaration in the Ecological
Metadata Language showing cardinality constraints and
extension from a base type.

2.4. Schema inference

As was mentioned earlier, the Jalama framework affords
a certain amount of flexibility when ingesting meta-

274 ECOLOGICAL INFORMATICS 2 (2007) 270-278

information used to drive the generation of data entry forms.
This framework is extensible in that it will accept arbitrary,
well-formed XML instance documents in addition to any
grammar expressed as an XML Schema document. In the
latter scenario, the XML Schema document is evaluated for
element and attribute content declarations, and a minimum-
required XML instance document is produced for reference
during the UI generation steps. In the former scenario, the
Jalama framework utilizes the Castor Project’s (Exolab Group,
2004) Java-to-XML binding libraries to infer either an explicit or
a general schema based on the elements and attributes
present in the instance document. For instance, an explicit
schema for a sequence of three “email” elements found in the
instance document would assume that there is a one-to-one
relationship with the elements and their declarations pro-
duced in the resultant schema document, with each declar-
ation’s maxOccurs attribute set to “1”, and each element
receiving a unique name (<email. 1>, <email. 2>, <email. 3>).
On the other hand, a general schema may be inferred where in
the same scenario, a single, repeatable <email> element
declaration is produced with the maxOccurs attribute set to
“37.

As is depicted in the initial steps of Fig. 1, we are able to
produce the inputs required for subsequent Ul generation
steps by gathering meta-information from instance docu-
ments and their associated XML schemas. This process
ultimately produces two Java objects, a Document Object
Model (DOM) of the well-formed but non-validated instance
document, and a Post SchemaValidation Infoset (PSVI) object
of the validated instance document. These objects provide
consistent programming interfaces that are called during the
Ul generation workflow. The latter refers to the augmented
XML Infoset that results from processing the XML instance
document conforming to its associated schema.

3. User interface generation

Once the DOM and PSVI models are available for evaluation,
two activities must be undertaken to generate an intuitive and
functional user interface without a priori knowledge of the
data schema: 1) Apply a series of progressively-detailed,
configurable business rules that refine the metadata-derived

user interface in terms of its structure, content, logic, and
application flow and, 2) Express the generated user interface
in a portable syntax that can be rendered at run-time in a
cross-platform application framework. We have chosen a
rule-based technology called Drools (see http://legacy.drools.
codehaus.org) that allows us to address (1) and separate the
configurable components of the system from the core
application logic. Secondly, we have chosen the Mozilla
application framework (see http://www.mozilla.org) as the
means of expressing, rendering, and running the data entry
form applications generated from the system. Mozilla’s XML
User Interface Language (XUL) and XML Binding Language
(XBL) provide the core technologies that allow us to render
cross-platform data entry applications that leverage existing
Web-based programming standards. As depicted in Fig. 2, the
Business Rules Engine (BRE) is applied in three instances: to
match logical patterns in the PSVI model to user interface
components, to populate and constrain those components
with instance-specific data, and to determine the physical
layout that is optimal for the collection protocol and the
properties of the collection device. Execution of the UI
generation workflow results in the creation of a XUL-based
interface definition represented in a serialized Java object that
is written to disk along with the original EML metadata
document that was used to initially drive the process.

3.1. Mozilla application framework

The Jalama software builds upon the mature and extensible
application development framework of the Mozilla project.
We chose to adopt the Mozilla framework because of a number
of reasons, including:

e Mozilla’s support of Internet-based standards such as
Cascading Style Sheets (CSS), the Document Object Model
(DOM), the Resource Description Framework (RDF), and XML

e The ability to express user interfaces in a transparent,
declarative XML-based syntax (XUL) that can be extended
using a straight-forward binding language (XBL) and a well-
known scripting language (ECMAScript)

e The ability to render XUL documents as user interfaces
immediately, without the need for compilation or pre-
processing

Yes
XML instance Sj;:?ahfﬁd
XML instance document Paitern Field_ Layo_ut apd Object
document Matching —® Populaton —® Pagination
XML scherma Engine Engine Engine Original XML
document document
No
Schema conerc || Sene || Goner
I
Engine Pattern Rules Rules Layout Rules
—_ —Cioom
Custom Po ujlt: 1Ii1c]>n Custom
Pattern Rules gules Layout Rules

—TT ™

Fig. 2 - Overview of the Jalama user interface generation architecture.

http://legacy.drools.codehaus.org
http://legacy.drools.codehaus.org
http://www.mozilla.org

ECOLOGICAL INFORMATICS 2 (2007) 270-278 275

e The open source nature of the project
e Mozilla’s widespread adoption and large user community.

Although we chose to adopt the Mozilla Layout Engine as the
target rendering engine for the initial implementation of the
Jalama software, the framework is not irrevocably tied to using
Mozilla since the Jalama architecture has been developed to
provide a flexible, plugin-based approach to adding or removing
rendering engines, so that other technologies could be used to
replace or complement Mozilla in future. For example, a code
generation module could be used to create user interfaces from
the same XUL documents that have been rendered by Mozilla.

3.2. Form library

By adopting the XUL and XBL languages, we benefit from the
existing library of fundamental user interface widgets provid-
ed within the Mozilla framework, such as <button>, <textbox>,
<listbox>, <scrollbox>, etc. However, for generating customized
forms that meet the needs of arbitrary data collection efforts,
we needed to build a form library that was accessible to the
Pattern Matching Engine in order to provide a rich set of
modular, visual components more tailored to scientific data
entry in the field. The Jalama software includes a flexible
architecture of XBL bindings — modular components whose
visual characteristics are defined by the XUL markup language,
and whose behavior is defined using ECMAScript (see http:/
www.w3.0rg/TR/xbl/). Each of the bindings implements a
common Application Programming Interface (API) to ensure
consistency of behavior across the collection of visual compo-
nents. Listing 3 shows an example XBL binding (shortened for
readability) that defines a “date_textbox” input control in the
XUL language. This visual component extends the “base_text-
box” component, and therefore inherits the methods and
behavior of its parent class. However, it overrides the validate
() method by providing its own ECMAScript code that validates
the user’s input against the date-time format that is specified
in the variable definition in the EML instance document that
this widget is being used to represent. If the input does not
adhere to the specified format, the researcher is visually
prompted to correct the entry in the field.

<binding id="“date textbox”
extends="#base_textbox”>
<implementation>
<method name=“validate”>
<body>
<![CDATA|
var input= this.value;
if (this.dateTimeFormat!=null
&& false=1lib.dateTimeMatchesFormat (
input, this.dateTimeFormat)) {
if (lib.isDateTime (input)) {
input = lib.formatDateTime (
input, this.dateTimeFormat) ;
if (input!=null) this.value=input;
else return this. doHilite();
} else{
return this. doHilite();

}

} else{
this.setHilite (false);
return true;
}
11>
</body>
</method>...
</implementation>
</binding>
Listing 3. An example XBL binding written in XUL and
ECMAScript.

3.3. Business rules engine

The Jalama framework adopts a rule-based approach to
customizing data entry forms for field applications. This
approach allows for an easily modifiable Ul generation
configuration that could be adapted by a data manager familiar
with declarative programming and is acquainted with proce-
dural programming. By utilizing a Business Rules Engine such
as Drools, the Jalama Ul generation logic system can be
extended by “chaining” any number of “rules”. This “rule-
chaining” concept promotes an extremely configurable UI
generation application and promotes the reuse of rules where
applicable. The Jalama system refines the rule-based approach
by defining and applying a generic, coarse grained set of rules
that can be subsequently overridden by a customizable set of
rules. This type of architecture allows organizations deploying
the Jalama software to develop their own Ul rule configura-
tions, but to rely on the generic rules provided within the
framework as a fallback. The Drools BRE is an open source
project that has an active developer community and makes
use of Java and XML technologies for its configuration files.

Currently the Jalama framework uses the Drools BRE to
store and process rules for the three main components of the
application: Ul widget pattern matching, Ul widget population,
and the Ul layout modules. We have manually configured the
business rules configuration files for each of these scenarios.
However, we expect that as the framework matures, a more
graphical system would be developed that interviews a
researcher for information regarding measurement method-
ology and experimental procedures, and uses the responses to
generate rules that dictate the layout and logic of their forms
for their particular collection effort.

3.4. Pattern matching

To demonstrate the simplicity of the rule-based approach,
Listing 4 continues the “date-time” example of the XBL widget
described earlier. In the “match_date” rule definition, the
Pattern Matching Engine will evaluate the element declaration
passed in from the PSVI model, and compare the element
declaration’s structural type to the “simple date” type found in
the XML Schema possible types. If the condition is a match,
then the consequence of the rule is to set the widget type for
this element to be the XBL binding defined by the “date_text-
box” identifier. Following this example, each fragment of the
PSVI model is passed to the Pattern Matching Engine for
evaluation based on the chain of business rules defined in the
configuration files. Each component of the data schema is

http://www.w3.org/TR/xbl/
http://www.w3.org/TR/xbl/

276 ECOLOGICAL INFORMATICS 2 (2007)270-278

then either mapped to a visible UI widget that will be rendered
in the data entry application, or it is mapped to an “invisible”
container element used to organize the layout of the form
using Cascading Style Sheet presentation properties. The
Pattern Matching Engine produces an ordered map of XPath
(Clark and DeRose, 1999) statements that point to each node of
the EML document, along with the corresponding XBL binding
assigned to the node.

<rule-set name="“jalama_uigeneration” .>
<rule name="match_date”>
<parameteridentifier=“element”>
<java:class>
edu.ucsb.nceas.jalama.generation.rule-
sengine.\
XSElementDeclarationWrapper
</java:class>
</parameter>
<java:condition>
element.getType () ==
edu.ucsb.nceas.jalama.generation.\
XMLSchemaElementTypes.SIMPLE DATE
</java:condition>
<java:consequence>
<![CDATA[
element.setWidgetType (
“textbox bindings.xmlf#fdate_ textbox”) ;
modifyObject (element) ;
retractObject (element) ;
11>
</java:consequence>
</rule>..
</rule-set>
Listing 4. An example of a business rule for the Jalama UI
generation system.

3.5. User interface field population

Once the pattern matching step has returned the XPath and
XBL Binding ordered map, the map is further refined by the
Field Population Engine. In this processing step, the empty
user interface widgets that were chosen by the Pattern
Matching Engine gain constraints that are defined in the
original PSVI model. Again, a series of both generic and
customizable business rules drive the process, and each
XPath-XBL binding pair in the ordered map are evaluated. A
typical example of field population would involve an enumer-
ated list of values to be presented to the researcher as choices.
For instance, Listing 5 shows the XML fragment (shortened for
readability) of an EML instance document that represents the
dataset variable located at the XPath location of /eml/dataset/
dataTable[1]/attributeList[1]/attribute [6]. The Field Population
Engine evaluates this location within the PSVI model, and
based on it’s structural type expressed in the EML, modifies
the XBL binding with the enumerated values in the instance
data. In this case, a <selectbox> has been assigned by the
Pattern Matching Engine, which in turn is populated with
<menuitem> elements that contain the EML coded strings as
values (“Piedras”, “Lompoc”, etc.) that are presented in the
drop-down widget.

<attribute>
<attributeName>
site
</attributeName>
<attributeLabel>
site code
</attributeLabel>
<attributeDefinition>
The code that represents the
sampling location.
</attributeDefinition>
<measurementScale>
<nominal>
<nonNumericDomain>
<enumeratedDomain enforced=“yes”>
<codeDefinition>
<code>Piedras</code>
<definition>
Piedras Blancas Lighthouse, CA
</definition>
</codeDefinition>
<codeDefinition>
<code>Lompoc</code>
<definition>
Lompoc Landing, CA
</definition>

</codeDefinition>

</enumeratedDomain>
</nonNumericDomain>
</nominal>
</measurementScale>
</attribute>
Listing 5. An example of an enumerated list found in EML used
to populate a drop-down Ul widget.

3.6. Layout and pagination

Given the fully populated XPath and XBL Binding map, the
final step is to determine the overall flow of the application
based on patterns and groupings present in the data schema
within the PSVI model, and by evaluating the step-by-step
procedures involved in the sampling design metadata. The
Layout and Pagination Engine is also driven by a set of
generic and customized business rules. The final product of
this step is not only a single XUL-based Ul description file,
but rather an array of XUL files that are used in coordination
to model the step-by-step data entry procedures of the
collection effort. Thus far, the Jalama framework has
implemented a generic “record per screen” layout that is
typical of repetitious field data collection present in moni-
toring programs. Fig. 3 depicts a rendered user interface on a
TabletPC field computer, and highlights a number of the UI
components that have been selected to represent the
variables found in the original EML-described dataset. In
this implementation, high-level metadata that pertain to the
entire collection effort are rendered at the top off the screen,
such as the data table name, the date of this collection series,
the collector’s name, and which record is currently being
modified. Each modifiable variable is arranged in the main

ECOLOGICAL INFORMATICS 2 (2007) 270-278 277

) Mozilla Firefox

LEX

Carol Rec #

transect number 0 w
transect position |0.01 I counting UP
Classification Code 1 ACASPP v
Classification Code 2 [BOSSPP v‘
Classification Code 3 CHOSPI v
site code [Piedras v
survey date % |

Time 11:11 AM

Recorder ‘ Carol M

reset

Fig. 3 - A customized, rendered user interface generated
from EML meta-information.

content area of the window. Each variable presented includes
the value of the <attributeLabel> element from the original
EML document on the left side of the interface, and a
corresponding populated data entry widget on the right side
of the screen. In the case of the “transect position” widget, an
auto-incrementing numeric textbox widget has been ren-
dered based on the custom business rules for pattern
matching. Likewise, the “survey date” label is displayed in
red, demonstrating the result of calling the validate ()
method on the custom <date_textbox> XBL widget when the
field is left blank.

The Layout and Pagination Ul generation step is critical to the
customization of data entry applications, since it heavily
influences the cadence of the collection effort. In some cases, a
non-optimized application flow is sufficient for successful data
collection, however, most field-based researchers tend to be time-
limited during the data collection process and are interested in
increasing their efficiency in the field. Likewise, layout and
pagination issues in electronic field collection can affect data
quality as well. Without being able to “go back” or “go forward”
through screens or presented questions, incorrect entries would
need to be noted and would be propagated into the final dataset
produced by the forms. Although the responsiveness of each
widget to invalid data-types certainly helps to maintain record-
by-record integrity, mistakes due to forgetfulness or errors in
judgement can only be addressed by a flexible application flow.

4, Conclusions

Utilization of graphical user interface generation techniques can
be a viable approach to producing responsive data entry

applications for ecological field studies. As previously noted,
scientists place a high value on optimized data entry forms in
order to maximize the results of field-based observation
programs. Leveraging meta-information found in highly struc-
tured and strongly-typed content specifications such as the
Ecological Metadata Language can provide a large portion of the
building blocks needed to produce customized user interfaces.

Likewise, using rule-based approaches to configuring
application logic can greatly improve the quality and main-
tainability of user interface generation software, especially if
they are developed using a community-based approach. Most
data collection applications share very similar properties, and
at times only diverge due programming language choice and
platform restrictions. By capitalizing on the rich, open-source
application programming framework developed by the Mozilla
Foundation, we are able to deploy a full-fledged application
based largely on declarative programming techniques, com-
mon web-scripting languages, and Internet-based standards.

By incorporating meta-information throughout the appli-
cation development and deployment cycles, we avoid jeopar-
dizing the longevity and usefulness of field-collected datasets.
The Ul generation and deployment framework we have
presented represents an initial implementation of a round-
trip application development system, from metadata creation,
Ul generation, application deployment, and creation of newly
collected datasets that are fully described according to the
details of the original metadata document. This open-source
framework should have broad applicability to research groups
in need of frequent form creation for varied data collection
efforts.

4.1. Future work

Although we made the decision to use the Mozilla Layout
Engine for the first rendering implementation of this project,
we also see opportunities to take other rendering approaches.
The application footprint of Mozilla, combined with a Java
Virtual Machine for the initialization and synchronization
portions of the software, becomes a significant factor in the
deployment on low-memory handhelds and mobile phones.
We envision a rendering component that performs code-
generation to transform Ul interfaces expressed in XUL and
XBL into executable binary applications for wider deployment.
Lastly, the pagination and layout component of the Jalama
framework needs customization work in order to accommo-
date a wide variety of sampling regimes. For example, we
envision a library of layout templates that correspond to
known experimental designs in ecology such that a researcher
could choose a template based on the design that has been
applied to the experiment or monitoring effort. Properties of
the template would be exposed as a graphical dialog that
allows the researcher to further customize the flow of the
application.

Acknowledgments

This material is based upon work supported by the National
Science Foundation under Grant No. DBI-0131178. We thank
the National Center for Ecological Analysis and Synthesis and

278 ECOLOGICAL INFORMATICS 2 (2007)270-278

the Marine Science Institute at the University of California,
Santa Barbara, for support during the development process.

REFERENCES

Berkley, C., Jones, M., Bojilova, J., Higgins, D., 2001. Metacat: a
schema-independent XML database system. Proceedings of the
Thirteenth International Conference on Scientific and Statis-
tical Database Management, p. 0171.

Biron, P.V., Malhotra, A., 2004. XML schema part 2: datatypes.
World Wide Web Consortium Recommendation 28 October
2004. http://www.w3.0rg/TR/xmlschema-2/(Available at).

Bray, T., Paoli, J., Sperberg-McQueen, C.M., 1998. Extensible markup
language (XML) 1.0. http://www.w?3.0rg/TR/REC-xml1998(February,
Available at).

Clark, J., DeRose, S., 2004. XML Path Language (XPath) Version 1.0.
World Wide Web Consortium Recommendation 16 November
1999. http://www.w3.0org/TR/xpath(Available at).

Cowan, J., Tobin, R. 2004. XML Information Set (Second Edition).
World Wide Web Consortium W3C Recommendation 4 Febru-
ary 2004. Available at: http://www.w3.org/TR/xml-infoset/.

Exolab Group, 2004. The Castor Project. http://castor.exolab.org/
(Available at).

Gaines, S.D., Jones, M.B., Schildhauer, M., Jones, C.S., Blanchette,
C.A., 2001. Capturing data in the field: an application

framework for easily creating custom data and metadata
entry forms on handheld and desktop computers. National
Science Foundation Award # DBI-0131178. (Available at http://
jalama.ecoinformatics.org).

Higgins, D., Berkley, C., Jones, M., 2002. Managing heterogeneous
ecological data using Morpho. Proceedings of the Fourteenth
International Conference on Scientific and Statistical Database
Management, pp. 69-76.

Jones, M.B., Berkley, C., Bojilova, J., Schildhauer, M., 2001.
Managing scientific metadata. IEEE Internet Computing 5 (5),
59-68.

Michener, W., Brunt, J., Helly, J., Kirchner, T., Stafford, S., 1997.
Nongeospatial metadata for the ecological sciences. Ecological
Applications 7 (1), 330-342.

Nottrott, R., Jones, M.B., Schildhuaer, M.P., 1999. Using XML-
structured metadata to automate quality assurance processing
for ecological data. Proceedings of the Third IEEE Computer
Society Metadata Conference, Bethesda, MD.

Reichman, O.J., Brunt, J., Helly, J., Jones, M.B., Willig, M.R., 1999. A
knowledge network for biocomplexity: building and evaluating
a metadata-based framework for integrating heterogeneous
scientific data. National Science Foundation Award # DEB99-
80154. (Available at: http://knb.ecoinformatics.org).

Van Tamalen, P.G., 2004. A comparison of obtaining field data
using electronic and written methods. Fisheries Research 69,
123-130.

http://www.w3.org/TR/xmlschema-2/
http://www.w3.org/TR/REC-xml
http://www.w3.org/TR/xpath
http://www.w3.org/TR/xml-infoset/
http://castor.exolab.org/
http://jalama.ecoinformatics.org
http://jalama.ecoinformatics.org
http://knb.ecoinformatics.org

	A metadata-driven framework for generating field data entry interfaces in ecology
	Introduction
	Leveraging meta-information
	Main workflow of the Jalama framework
	Instance-specific meta-information
	Schema-level meta-information
	Schema inference

	User interface generation
	Mozilla application framework
	Form library
	Business rules engine
	Pattern matching
	User interface field population
	Layout and pagination

	Conclusions
	Future work

	Acknowledgments
	References

